Infotek

Solutions
Unix Shell Programming

e Shell Prompt
Topics to be
covered: e Shell Types

e Shell Comments

e Variable Names

e Defining Variables
e Accessing Values

Readonly command
Unsetting Variables

e Shell Common Variables

Shell Prompt

date and time:

$date
Thu Jun 25 08:30:19 MST 2009

Shell Types In UNIX there are two major types of shells

2. C shell, default prompt is the % character

The prompt, $, which is called command prompt, is issued by the shell.

While the prompt is displayed, you can type a command.

Following is a simple example of date command which displays current

1. Bourne shell, default prompt is the $ character

Shell Scripts list of commands, which are listed in the order of execution.
Have comments beginning by pound(#)
Shell script begins with a line like : #!/bin/sh
A script that contains pwd and Is command looks
#!/bin/bash
pwd
Is
Shell You can put your comments in your script as follows —
Comments

#!/bin/bash

Your comment is here
Script follows here:
pwd

Is

Now you save the above content and make this script executable as
follows —

$chmod +x test.sh

Now you have your shell script ready to be executed as follows —

$./test.sh

This would produce following result —

/home/solomon
index.htm unix-basic_utilities.htm unix-directories.htm
test.sh unix-communication.htm unix-environment.htm

Note: To execute your any program available in current directory you
would execute using ./program_name

#!1/bin/sh

Comment is here
Script follows here:
echo "What is your name?"

read PERSON
echo "Hello, $PERSON"

Sample

script

$./test.sh

What is your nhame?
Solomon A

Hello, Solomon A

$

Variable

Names

The name of a variable can contain only letters (a to z or A to Z),
numbers (0 to 9) or the underscore character (_). Variable can’t begin

with number

The following examples are valid variable names —

_SOLOMON
TOKEN_A
VAR_1
VAR_2

Following are the examples of invalid variable names —

2_VAR
-VARIABLE
VAR1-VAR2
VAR_A!

Defining

Variables

Variables are defined as follows —

variable_name=variable_value

For example:

NAME="Solomone A"

Accessing
Values

To access the value stored in a variable, prefix its name with the dollar

sign ($) —

For example, following script would access the value of defined variable

NAME and would print it on STDOUT -

#!/bin/sh

NAME="Solomon A"
echo $NAME

This would produce following value -

Solomon A

Readonly
command

For example, following script would give error while trying to change
the value of NAME —
#1/bin/sh

NAME="Solomon A"
readonly NAME
NAME="Qadiri"

This would produce following result —

/bin/sh: NAME: This variable is read only.

Unsetting

Variables

unset variable_name
Above command would unset the value of a defined variable. Here is a

simple example —

#!/bin/sh

NAME="Solomon A"

unset NAME

echo $NAME
Process ID For example, the $ character represents the process ID number, or
of Current PID, of the current shell:
Shell

$echo $$

Above command would write PID of the current shell —

29949

Shell Common Variables

Variable Description
$0 The filename of the current script.
$n These variables correspond to the arguments with which a script was

invoked. Here n is a positive decimal number corresponding to the position of
an argument (the first argument is $1, the second argument is $2, and so

on).
$# The number of arguments supplied to a script.
$* All the arguments are double quoted. If a script receives two arguments, $*

is equivalent to $1 $2.

$@ All the arguments are individually double quoted. If a script receives two
arguments, $@ is equivalent to $1 $2.

$?
$$

$!

The exit status of the last command executed.

The process number of the current shell. For shell scripts, this is the process
ID under which they are executing.

The process number of the last background command.

