

Unix Shell Programming

Topics to be
covered:

 ● Shell Prompt

● Shell Types

● Shell Comments

● Variable Names

● Defining Variables

● Accessing Values

● Readonly command

● Unsetting Variables

● Shell Common Variables

Shell Prompt

The prompt, $, which is called command prompt, is issued by the shell.

While the prompt is displayed, you can type a command.

Following is a simple example of date command which displays current

date and time:

$date

Thu Jun 25 08:30:19 MST 2009

Shell Types

 In UNIX there are two major types of shells

1. Bourne shell, default prompt is the $ character

2. C shell, default prompt is the % character

Shell Scripts

 list of commands, which are listed in the order of execution.

Have comments beginning by pound(#)

Shell script begins with a line like : #!/bin/sh

A script that contains pwd and ls command looks

#!/bin/bash

pwd

ls

Shell

Comments

 You can put your comments in your script as follows −

#!/bin/bash

Your comment is here

Script follows here:

pwd

ls

Now you save the above content and make this script executable as

follows −

$chmod +x test.sh

Now you have your shell script ready to be executed as follows −

$./test.sh

This would produce following result −

/home/solomon

index.htm unix-basic_utilities.htm unix-directories.htm

test.sh unix-communication.htm unix-environment.htm

Note: To execute your any program available in current directory you

would execute using ./program_name

#!/bin/sh

Comment is here

Script follows here:

echo "What is your name?"

read PERSON

echo "Hello, $PERSON"

Sample

script

 $./test.sh

What is your name?

Solomon A

Hello, Solomon A

$

Variable

Names

 The name of a variable can contain only letters (a to z or A to Z),

numbers (0 to 9) or the underscore character (_). Variable can’t begin

with number

 The following examples are valid variable names −

_SOLOMON

TOKEN_A

VAR_1

VAR_2

 Following are the examples of invalid variable names −

2_VAR

-VARIABLE

VAR1-VAR2

VAR_A!

Defining

Variables

 Variables are defined as follows −

variable_name=variable_value

For example:

NAME="Solomone A"

Accessing

Values

 To access the value stored in a variable, prefix its name with the dollar

sign ($) −

For example, following script would access the value of defined variable

NAME and would print it on STDOUT −

#!/bin/sh

NAME="Solomon A"

echo $NAME

This would produce following value −

Solomon A

Readonly

command

 For example, following script would give error while trying to change

the value of NAME −

#!/bin/sh

NAME="Solomon A"

readonly NAME

NAME="Qadiri"

This would produce following result −

/bin/sh: NAME: This variable is read only.

Unsetting

Variables

 unset variable_name

Above command would unset the value of a defined variable. Here is a

simple example −

#!/bin/sh

NAME="Solomon A"

unset NAME

echo $NAME

Process ID

of Current

Shell

 For example, the $ character represents the process ID number, or

PID, of the current shell:

$echo $$

Above command would write PID of the current shell −

29949

Shell Common Variables

Variable Description

$0 The filename of the current script.

$n These variables correspond to the arguments with which a script was

invoked. Here n is a positive decimal number corresponding to the position of

an argument (the first argument is $1, the second argument is $2, and so

on).

$# The number of arguments supplied to a script.

$* All the arguments are double quoted. If a script receives two arguments, $*

is equivalent to $1 $2.

$@ All the arguments are individually double quoted. If a script receives two

arguments, $@ is equivalent to $1 $2.

$? The exit status of the last command executed.

$$ The process number of the current shell. For shell scripts, this is the process

ID under which they are executing.

$! The process number of the last background command.

